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ABSTRACT
Although digital images indexing and querying techniques
have extensively been studied for the last years, few sys-
tems are dedicated to medical images today while the need
for content-based analysis and retrieval tools increases with
the growth of digital medical image databases. We analyze
medical image properties and we evaluate Gabor-filter based
features extraction for medical images indexing and classifi-
cation. The goal is to perform clinically relevant queries on
large image databases that do not require user supervision.
We demonstrate on the concrete case of cardiac imaging
that these techniques can be used for indexing, retrieval by
similarity queries, and to some extent, extracting clinically
relevant information out of the images.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing; H.3.3 [Information Storage and
Retrieval]: Information Search and Retrieval

General Terms
Management, Experimentation

Keywords
Medical imaging, texture, indexing, retrieval, segmentation

1. INTRODUCTION

1.1 Motivations
Medical images have become a key investigation tool for

medical diagnosis and pathology follow-ups. Digital imaging
is becoming the standard for all image acquisition devices
and, with the generalization of digital acquisition, there is
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an increasing need for data storage and retrieval. Medical
images represent an enormous amount of data: the annual
production of a single average size radiology department
represents tens of terabytes of data. Therefore, petabytes
of medical images are produced in industrialized countries
each year. For these data, there is a need for very long term
archiving (the European Union recommends the archiving of
all medical data for 20 years and up to 70 years in specific
cases).
With the growth of medical databases, new applications

devoted to statistical analysis of medical data have emerged
such as breast cancer screening, lungs images analysis, or
oncology in general. The datasets manipulated for these
applications are not images of one patient or coming from
one radiology department but rather images showing a par-
ticular pathology or specific features. This data set has to
be dynamically assembled by automatically selecting rele-
vant images among available databases. Similarly, a physi-
cian is often interested by similar cases to the one he is
studying and the similarity measurement usually involves a
medical background. Archiving of tons of medical images is
only relevant if adapted query tools exist that allow medi-
cal users to browse the data sources. Driven by applications,
photographs image indexing and content based retrieval sys-
tems have been thoroughly studied these last years. How-
ever, there has been far less effort to deploy medical image
dedicated systems so far [11].
In the early years of image database assembling, image

indexing used to be mostly text-based and manual: images
were annotated with keywords and retrieved by using a text-
based database management system. In the medical world,
the images acquired are usually accompanied by metadata
related to the patient, the image acquisition and the radiol-
ogy department responsible for the acquisition. Indeed, the
DICOM (Digital Image and COmmunication in Medicine)
format that recently emerged as the standard for medical
image storage and communication encompasses textual in-
formation fields. Nevertheless, textual information is limited
for two main reasons: the large increase of the data volume,
which makes manual annotation tiresome and the difficulty
to express the image content with keywords which are often
inconsistently assigned among different indexers: medical
records are complex, difficult to analyze, and rarely avail-
able on-line. Except in some specific cases, only the image
content itself carries the necessary information for indexing
and retrieval.
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Figure 1: General architecture of CBIR-systems

1.2 Content based image retrieval systems
Content-Based Image Retrieval (CBIR) emerged in the

early 1990s mainly to index color photographs. In this ap-
proach, images are represented by a vector in a feature space
and a similarity measure between images is defined from a
distance in the feature space. Figure 1 presents the gen-
eral architecture of CBIR systems proposed in [14]. Given a
query image, such a system first extracts its feature vector
and then compares it to those of the images stored in the
database. This way, it can rank images of the database ac-
cording to the distance of their feature vector to the query
one. This ranking is the query result.
Many CBIR were developed during the last years, both

by commercial firms and academia. The earliest and most
famous one is QBIC (Query By Image Content) [7] which
was proposed by IBM. Virage is another commercial CBIR
which is for example used by CNN [1]. Many systems have
also been proposed from the academia like Photobook [19],
VisualSEEK [24], Mars (Multimedia Analysis and Retrieval
System) [9] - which proposes a solution of relevance feedback
-, Candid [12] or Netra [15]. All of those systems only use low
level features - mainly color, texture and shape - and do not
include any semantic level. Later systems like Blobworld [3]
include a segmentation step in the query process to integrate
higher level information. In Blobworld, the segmentation
step is based on color, position and texture features and
leads to a small number of homogeneous regions called blobs.
Submitting a request, the user can select the relevant blobs
he wants the query to be applied on. Nevertheless, no system
offers any interpretation of images yet, which would require
a dedicated layer in the system. This loss of information
from an image to its representation in a feature space is
called the semantic gap [18].

1.3 Medical CBIR
Despite CBIR developments, existing systems hardly ad-

dress all medical image properties. There exists a large num-
ber of medical image acquisition devices among which com-
puted tomography scanners (CT), magnetic resonance im-
agers (MRI), ultrasound probes (US) and nuclear imagers
are the most widely used. They provide images with very
different properties in terms of resolution, contrast, and sig-
nal to noise ratio. They are highly specialized and they
produce images giving very different information on the hu-
man body anatomy and physiology. Inside one modality,
the tuning of an imager may lead to significantly varying
images (e.g. an MRI may be used for acquisition of com-
pletely different anatomical and functional information).

Although the need is clearly identified, the difficulty to
develop medical image indexing and retrieval tools is due to
several factors:

• In most cases, medical images are intensity only images
carrying less information than color images. In some
rare cases however, vectorial images may be produced
(e.g. tensor MRI). More frequently, multimodality im-
ages of a same body may be acquired (e.g MRI and
ultrasound images of the same area). However, mul-
tiple images are usually not aligned in space and re-
quire an additional registration procedure. In the case
of soft and deformable structures, complex non-rigid
registration procedures are required.

• Medical images are usually low resolution and high
noise images. They are difficult to automatically ana-
lyze for extracting features. Medical images acquired
with different devices, even using the same modality,
may have significantly varying properties. Some au-
thors proposed image correction and normalization al-
gorithms to improve image comparison.

• Ideally, medical images should be indexed on medi-
cal criteria that are extremely variable depending on
the kind of image acquisition considered (imaged body
area, clinical context, etc). Moreover, automatic di-
agnosis in medical images is mostly impossible today
except in rare specific cases. Medical images interpre-
tation is often difficult even for trained radiologists.

On the other hand, a large fraction of medical acquisition
devices produce 3D data today that provide an additional
information not available in 2D images. The use of 3D, and
sometimes multisequence, data may enable powerful feature
detection in some cases.
As [11] notice, the medical image retrieval must often be

processed according to pathology bearing regions which are
precisely delimited on the images and could not be auto-
matically detected in the general case. Moreover, low level
features like color, texture or shape are not sufficient to
describe medical images [14]. As a consequence, medical
CBIRs require a high level of content understanding and
interpretation of images, which implies their automatic seg-
mentation [18]. Finally, a high level of query completion and
accuracy is required by such systems to make them reliable
from a clinical point of view [25].
Some specialized CBIR have thus been proposed in medi-

cal applications. Chu et al. [4] present an image retrieval sys-
tem dedicated to brain MRI which indexes images mainly on
the shape of the ventricular region. Korn et al [13] propose
a system for fast and effective retrieval of tumor shapes in
mammogram X-rays. Comaniciu et al [6] describe a system
which aims at helping physicians in the diagnosis of lympho-
proliferative disorders of blood. Nevertheless, a description
of the clinical use of such systems is very rare [18], except
for the systems ASSERT [22], which is dedicated to HRCT
images of the lung and includes information from physicians
- such as anatomical landmarks and pathology bearing re-
gions - and IRMA [14] which proposes a multi-step approach
for the classification of images into anatomical areas, modal-
ities and view points.
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1.4 Objectives
Digital image processing algorithms have been developed

for decades for extracting features. They yield to high level
interpretation by providing quantitative informations on med-
ical image contents. They are often highly specialized and
not well adapted to general image indexing and retrieval.
In this paper we avoid to address the medical image in-

terpretation problem that is very specific to some particular
applications. Instead, we focus on general purpose feature
extraction techniques for image indexing. We present local
feature extraction measures and we show how classification
and un-supervised pre-segmentation can help in indexing
medical image databases.
The intend is the automatic indexing of acquired medi-

cal data without user supervision for responding to medical
users queries. In this context, it is only relevant to com-
pare images of a same modality, and sometimes with the
same acquisition settings even inside a same modality: im-
age variability across modalities is far too high and only
high level image analysis and interpretation tools could pro-
vide information to correlate such different data. Results
are shown on magnetic resonance cardiac sequences.

2. MEDICAL IMAGES INDEXING AND
RETRIEVAL

CBIR systems have often indexed images on global fea-
tures extracted from the whole image. However, the need for
features related to subcomponents of the image has emerged
and bloc-based algorithms have been designed with differ-
ent granularity levels. Bloc size can range from full image
chunks to local areas made of a limited number of pixels.

2.1 Global features
Global features such as image histograms have often been

used for color images indexing. They provide an “idea at
a glance” of the image content. In medical images, the full
image histograms are not very informative as the image are
usually intensity images only and the histogram may be very
variable for different image resolutions.
Similarity measures have often been used in the medi-

cal image domain for comparing images to a reference [20,
17]. Similarity measures use a voxel-to-voxel measurement
to return a single similarity coefficient to the user. However,
they have two drawbacks in the context of medical indexing.
First, images require proper registration before a similarity
measure can be computed and general purpose fully auto-
matic registration algorithms are not available yet. Second,
these measures depend on a reference image and will vary
with a reference change.
Therefore, local descriptors are more appropriate for generic

medical image indexing. Indeed, bloc-based algorithms have
been recently proposed for similarity measurements, trying
to make this kind of measure more specific [21].

2.2 Local features
Medical images are often highly textured and voxel based

analysis is an interesting path to explore. Moreover, as color
and intensity are not as important in medical images as
in photographs, texture analysis becomes crucial in med-
ical image retrieval. Defining texture is something quite
ambiguous because of the imprecise nature of this concept.
According to Smith and Chang [23], texture refers to visual

patterns which have properties of homogeneity and cannot
result from the presence of only a single color or intensity.
Texture perception plays an important role in the human vi-
sual system of recognition and interpretation. Two main ap-
proaches can be identified concerning texture analysis: sta-
tistical methods and filtering methods.
Among statistical methods, co-occurrence matrices, which

were proposed by Haralick in 1973 [8], are still widely used.
Those matrices model spatial dependencies between grey
levels of an image. Given a distance d and an orientation
θ, the (i, j) coefficient of the corresponding matrix is the
probability of going from a grey level i to a grey level j with
an intersample spacing of d along the axis making an angle
θ with the x axis. For instance, with distance d = 1 and
orientation θ = 0, the unnormalized coefficients are defined
in an image I by:

P (i, j, 1, 0) = card{ (k, l), (m,n) ∈ (I × I)/|k −m| = 1,
l − n = 0, I(k, l) = i, I(m,n) = j}

where card{} denotes the number of elements in the set and
I(m,n) gives the grey level of the pixel (m,n).
After the computation and normalization of these matri-

ces, a set of 14 second-order statistics that are the textural
features of the image is computed out of the coefficients .
Tamura et al [26] also proposed a statistical approach to

texture extraction based on psychological studies on human
perception. They identified 6 meaningful texture features,
namely, coarseness, contrast, directionality, line-likeness, reg-
ularity and roughness. The autocorrelation function of an
image can also be used to quantify the regularity and the
coarseness of a texture. This function is defined with the
following formula for an image I:

ρ(x, y) =

PN
u=0

PN
v=0 I(u, v)I(u+ x, v + y)PN
u=0

PN
v=0 I

2(u, v)

If the texture of an image is coarse, its autocorrelation func-
tion smoothly decreases and if the texture is fine, the func-
tion rapidly decreases. If the texture is regular, the auto-
correlation function shows local extrema [27].
Filtering based texture extraction consists in using sets

of filters to analyze the image spectrum and characterize it.
Among filters used in texture extraction, Gabor ones are
widely mentioned in the literature [2, 16, 5]. Gabor filters
are used in banks, in which each filter is tuned to a spe-
cific orientation and spatial frequency. A two dimensional
Gabor filter is a Gaussian-modulated sinusoid. The impulse
response of its real (even) version is given by:

h(x, y) =
1

2πσxσy
exp

�
−1
2

�
x2

σ2
x

+
y2

σ2
y

��
cos(2πFx)

where F is the frequency of the filter
In the spatial-frequency domain, this filter is represented

by two symmetrical Gaussians:

H(u, v) = exp
�−2π2

�
(u− F )2σ2

x + v2σ2
y

�	
+

exp
�−2π2 �(u+ F )2σ2

x + v2σ2
y

�	
To implement a Gabor bank of filters, the parameters F, θ,
σx, σy and the frequency and angular bandwidths BF and
Bθ must be properly set in order to capture textural infor-
mation well. Most authors recommend to set BF and Bθ in
order to obtain non overlapping filters and to determine σx
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and σy according to the following formulas:

σx =

√
ln 2(2BF + 1)√
2πF (2BF − 1) and σy =

√
ln 2√

2πF tan(Bθ
2
)

As [5] mentioned, using center frequency spacing of one
octave with frequency bandwidth BF of one octave and ori-
entation spacing of 30◦ with angular bandwidth Bθ of 30

◦

is characteristic of the human visual system.
Even if no single best texture model has been identified,

Gabor filters are strongly correlated with the human visual
system which is made up of a number of independent detec-
tor mechanisms each preceded by a relatively narrow band
filter tuned to a different frequency [5]. Thus, their use for
texture features extraction is particularly relevant in image
retrieval applications [16] in particular in the medical do-
main where texture plays a key role in image interpretation.
As a consequence, we subsequently use them for texture de-
scription.

2.3 Features localization: segmentation
Local image features extraction in medical images will give

different image information in areas covered by different tis-
sues. In some medical applications where a tissue of interest
covers a large fraction of the image or a prior knowledge on
the region of interest is available, extracting features by fixed
blocs in the image is sufficient. However in the general case,
one would like to identify features for each tissue in the im-
age. This would require prior image segmentation. Medical
image segmentation is one of the most challenging problem
in medical image analysis and a very active research topic.
Therefore, there is no algorithm available in the general case
for isolating medical image regions.
Alternatively, texture analysis by blocs gives information

on the composition of various areas in an image and there-
fore provides clue for a rough segmentation of the image.
Classification of image voxels by their texture features is a
possible pre-indexation stage of the image. Indeed, image
retrieval and segmentation are strongly correlated. On one
hand, segmentation is the first step to introduce semantic
features in a CBIR system because it is required to identify
objects or relevant regions in an image. And on the other
hand, segmenting an image is equivalent to the classification
of its pixels and image retrieval also corresponds to a classi-
fication task. That is why we considered the segmentation
problem in this work.

2.4 Algorithms
Image indexing. In order to index the images, we used a

bank of 42 Gabor filters with an angular spacing of 30◦ (cor-
responding to the orientations 0◦, 30◦, 60◦, 90◦, 120◦ and
150◦) and a frequency spacing of one octave (correspond-
ing to the frequencies

√
2, 2

√
2,...,N

4

√
2 cycles per image, N

being the size of the image). We used angular bandwidths
of 30◦, frequency bandwidths of 1 octave and determined
σx and σy as presented in 2.2 to obtain non overlapping fil-
ters. The spectrum of this bank of Gabor filters is shown in
figure 2. We then computed the mean and the standard de-
viation of the magnitude response of the images, in order to
obtain feature vectors as proposed by Manjunath et al [16].
Segmentation. Similarly, we propose a texture-based

segmentation algorithm which will be applied to an indexa-
tion task in the next section. For each pixel of our images,

Figure 2: Spectrum of the used bank of Gabor filters
(half-peak supports of the filters)

we considered a 8x8 neighborhood, on which we applied a
bank of 16 Gabor filters with an angular spacing of 30◦ (cor-
responding to the orientations 0◦, 30◦, 60◦, 90◦, 120◦ and
150◦) and a frequency spacing of one octave (corresponding
to the frequencies

√
2 and 2

√
2 cycles per image). Standard

deviations and bandwidths were tuned as presented in the
preceding section.
The feature vectors obtained were classified using the k-

nearest neighbors algorithm [10]. An advantage of this method
is that the only input parameter of the classifier is the num-
ber of classes. Each class is represented in the feature space
by its barycenter that is initially randomly set. Then, each
element is assigned to its nearest class (according to the Eu-
clidean distance) and barycenters are iteratively updated.
The algorithm stops when no more element moves from one
class to another during an iteration.
Given that no assumption is done concerning the nature

of the input data of the algorithm, it can be used for gen-
eral purpose. Consequently, we tested this method on vari-
ous images. Figure 3 shows the segmentation result on car-
diac MRI segmented into three classes corresponding to the
blood, the myocardium and the background (top row) and
on brain MRI segmented into white matter, grey matter,
cerebro-spinal fluid and skull (bottom row).
Image retrieval. The principle of the queries is the com-

putation of a distance between the features of the query im-
age and those of the images in the database. Once all the
distances are computed, the algorithm ranks the images of
the database from the nearest to the furthest to the query
image. We used Euclidean distance to process our queries.
Thus, the distance between two feature vectors f0 and f1 is
given by the following formula:

d =

vuut NX
i=1

(f0(i)− f1(i))2

where f0(i) denotes the ith coordinate of the vector f0 and
N is the dimension of the feature space.

3. APPLICATION TO CARDIAC IMAGING

3.1 Magnetic Resonance Images of the heart
In this section we demonstrate the relevance of a texture

based indexing and retrieval system for medical images with
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Figure 3: A cardiac (top) and a brain (bottom) MRI
slice and the corresponding classified images

a database of cardiac magnetic resonance images. MRI is
a modality widely used for cardiac analysis. It can provide
3D images and temporal acquisitions along the cardiac cy-
cle. Figure 4 shows an example of the images used in this
experiment. Each 2D image is one slice of the thorax of a
patient. The heart appears on the top left area of the center
(a zoom on the heart area can be seen on left of figure 3).
The darker area next to the heart is a lung. Inside the heart
myocardium, the blood filled cavities of the right and left
ventricles appear as bright structures.
The MRI device acquiring the images used in this section

produced temporal sequences of 3D images: 8 to 10 volumes
are acquired along one cardiac cycle. The volumes are stored
as sets of cutting slices in the image database. Each volume
is made of 10 slices. Each slice is similar to the ones shown
in figure 4. The total amount of slices processed in this
experiment is 170.
One sequence shows a complete heart beat: contraction

phase (systole) followed by a dilation phase (diastole). There
are two kind of queries that could be made considering that
kind of images: (i) given one slice, find all similar slices
(slices corresponding to the same body area i.e. with the
same vertical position) or (ii) given one slice, find slices cor-
responding to a given instant in time (in particular the end
of systole or the end of diastole).

3.2 Cardiac images indexing and database
clustering

The indexes proposed in section 2.4 were computed for
each slice and the feature vectors were stored in the image
database. We then clustered the database according to those
indexes using the k-nearest neighbors algorithm. We split
the database into 10 clusters, each of them being assumed to

Rank 0 - t=4 ; h=1 (query image) Rank 1 - t=5 ; h=1 ;

Rank 2 - t=3 ; h=1 Rank 3 - t=6 ; h=1

Rank 4 - t=4 ; h=0 Rank 5 - t=9 ; h=1

Rank 6 - t=2 ; h=1 Rank 7 - t=5 ; h=0

Figure 4: Feature-based image retrieval : example
of query.

gather images with the same value of the vertical coordinate
in the initial sequences.

3.3 Cardiac images retrieval
Figure 4 shows the result of a feature-based query per-

formed on the database given a sample image. The sample
image is shown on the top left and the “nearest” database
images are shown by decreasing order from left to right and
top to bottom. t represents the image instant and h the slice
vertical position. Notice that the system best retrieves im-
ages that belong to the same vertical position in the query
image. This result is consistent because the features were
computed on the whole image whereas the limited cardiac
region is almost the only one which varies with time. There-
fore, the overall image aspect has more influence than the
temporal variations of the heart.

3.4 Segmentation assisted retrieval
Nevertheless, taking into account medical considerations,

the retrieval of images that belong to the same instant that
the query image is an important problem to cope with.
Therefore, we focused on the retrieval of the end of systole
into a 3D+t cardiac MRI sequence. To face this problem,
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µ σ
Cluster 0 0.74 0.74
Cluster 1 0.97 0.81
Cluster 2 2.96 0.84
Cluster 3 2.91 0.29
Cluster 4 6 0
Cluster 5 4.61 0.57
Cluster 6 4.92 0.62
Cluster 7 6.53 0.50
Cluster 8 8 0
Cluster 9 9 0

Table 1: Mean (µ) and standard deviation (σ) of the
vertical coordinate of images among clusters.

we propose the following method that includes the texture-
based segmentation algorithm of the cardiac region we pre-
sented before. The fundamental hypothesis of the method
lies in the fact that the contraction of the myocardium is
correlated to the fineness of its texture: the more the my-
ocardium will be contracted, the finer its texture will be.
This hypothesis makes sense in an anatomical view because
the contraction of the myocardium corresponds to a reduc-
tion of its volume and its fibers then lie more closely.
To better capture the myocardium texture, we first con-

sider the cardiac region from the thoracic images, by select-
ing a region of interest shown in figure 3. The algorithm then
segments this region into three classes corresponding to the
myocardium, the blood and the background, as presented in
section 2.4.
We then considered the myocardium class and computed a

parameter ρ corresponding to the evaluation of the coarse-
ness of the myocardium texture. ρ is computed from the
Gabor texture features of the barycenter of the myocardium
class resulting from the k-nearest neighbors algorithm. It
is defined as the quotient between the sum of the means of
the magnitude responses to the low frequency Gabor filter
and the sum of the means of the magnitude responses to the
high frequency Gabor filter:

ρ =

P5
i=0 µ0,i×30P5
i=0 µ1,i×30

where µ0,θ denotes the mean of the magnitude response to
the low frequency Gabor filter at the orientation θ and µ1,θ

denotes the mean of the magnitude response to the high
frequency Gabor filter at the orientation θ.
Figure 5 shows a part of the sequence we indexed using

this ρ parameter. Figure 6 presents the evolution of the
mean of ρ on the slices of a volume along time. The sequence
consistently present a cardiac cycle evolution.

3.5 Results evaluation
Image indexing and database clustering. To quan-

titatively evaluate the relevance of the feature vectors-based
clustering of the database, we computed the mean and stan-
dard deviation of the vertical coordinate of the images in
each cluster. Table 1 presents the values we obtained. The
standard deviations are all inferior to 0.84 (their mean is

t=0 t=1

t=2 t=3

t=4 t=5

t=6 t=7

t=8 t=9

Figure 5: Extraction of the cardiac sequence we in-
dexed using the parameter ρ. One can see the evo-
lution of a slice of this 3D+t sequence along time.
Systole occurs between instants t=0 and t=5. Then
diastole begins.
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Figure 6: Evolution of the parameter ρ in a cardiac
sequence along time. ρ effectively reaches a mini-
mum around the end of systole instant.

0.44), which indicates a relatively low dispersion among clus-
ters. In clusters 4, 8 and 9, standard deviation is even null,
which means that all the images of the concerned clusters
have the same vertical coordinate in the initial sequences.
Each of the other clusters contains an homogeneous set of
images having close vertical coordinates in the initial se-
quences. This clustering result demonstrates the ability of
our system to gather images of the database having the same
vertical position in the initial sequences.
Image retrieval. To quantify the accuracy of the re-

trieval procedure, we compare the known vertical position
of the slices (ground truth) with the one of the computed
results. We define the vertical score of a query as the mean
of the vertical distances between the query image and the
N first results of the query, balanced with the ranks of the
results. Thus, the vertical score is defined as follows:

scorev =

PN
i=1 (N + 1− i)|zquery − zi

result|PN
i=1 (N + 1− i)

where zquery is the vertical position of the query image in
its original sequence and zi

result is the vertical position of
the ith result in its original sequence.
Note that result number 0 is always the query image. That

is why we did not include it into scorev. We computed this
score for the 170 images of our database and with N=8. We
obtained a mean vertical score of 0.23. It means that given
a query image in the database, the mean vertical distance
to the 8 best results of the query is 0.23 slices. Taking
into account that the two original sequences have a vertical
dimension of respectively 10 and 7, we can conclude that our
system is pertinently able to retrieve images of the database
having the same vertical position than the query image using
unsupervised texture features only.
Segmentation assisted retrieval. We can notice that

the curve of figure 6 shows a minimum around t=5, which
corresponds to the end of systole instant indeed, as it can
be seen in figure 5. Thus, the parameter ρ is consistently
indexing cardiac sequences and enables retrieval of the end
of systole instant.

4. CONCLUSIONS
Although still preliminary this work demonstrates the rel-

evance of texture-based features for medical images indexing
and retrieval. We have analyzed the properties of medi-
cal images. Global features are hardly usable for medical
image indexing and therefore we have experimented local
Gabor filter-based features extraction on cardiac MRIs. In
the future, an extension of that kind of filter to 3D and/or
multimodal images would be interesting to benefit from all
information available in medical images.
Automatic segmentation of medical images would be of

great interest for region-based analysis of the images. Al-
though generic and automatic segmentation tools are far
from being available, indexing and classification is an in-
teresting method to obtain an unsupervised rough image
partitioning suited for assisting local feature extraction in
images.
The experiment described in section 3 shows that clini-

cally relevant information can be extracted out of the im-
ages without any user supervision nor fine parameter tuning
for a specific purpose. Local features extraction on a per-
tissue basis enables the study of clinically relevant param-
eters such as the myocardium contraction evolution along
time. It demonstrates that some semantic interpretation
of the image can be accomplished through low-level textu-
ral information extraction and classification. Texture filters
are therefore interesting for accomplishing general purpose
medical image indexing although high level query tools will
need to add domain-specific knowledge to perform queries
responding to specific clinical requests.
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